Multifractality and Long-Range Dependence of Asset returns: the Scaling Behavior of the Markov-Switching Multifractal Model with Lognormal volatility Components
نویسندگان
چکیده
In this paper, we consider daily financial data from various sources (stock market indices, foreign exchange rates and bonds) and analyze their multiscaling properties by estimating the parameters of a Markov-switching multifractal (MSM) model with Lognormal volatility components. In order to see how well estimated models capture the temporal dependency of the empirical data, we estimate and compare (generalized) Hurst exponents for both empirical data and simulated MSM models. In general, the Lognormal MSM models generate “apparent” long memory in good agreement with empirical scaling provided that one uses sufficiently many volatility components. In comparison with a Binomial MSM specification [11], results are almost identical. This suggests that a parsimonious discrete specification is flexible enough and the gain from adopting the continuous Lognormal distribution is very limited.
منابع مشابه
Forecasting volatility under fractality, regime-switching, long memory and student-t innovations
We examine the performance of volatility models that incorporate features such as long (short) memory, regime-switching and multifractality along with two competing distributional assumptions of the error component, i.e. Normal vs Student-t. Our precise contribution is twofold. First, we introduce a new model to the family of Markov-Switching Multifractal models of asset returns (MSM), namely, ...
متن کاملMulti-scaling Modelling in Financial Markets
In the recent years, a new wave of interest spurred the involvement of complexity in finance which might provide a guideline to understand the mechanism of financial markets, and researchers with different backgrounds have made increasing contributions introducing new techniques and methodologies. In this paper, Markov-switching multifractal models (MSM) are briefly reviewed and the multi-scali...
متن کاملThe Effect of Monetary Policy on Regime Changes of Financial Assets
The main objective of this study was to investigate the effect of monetary policy on changes in the price of financial assets (including foreign exchange, gold and stocks) in Iranian economy. In this regard, this paper answers whether monetary policy could lead to regime changes in asset markets. To answer this question, monthly data during the years 1995 to 2017 and a combination of Markov Swi...
متن کاملThe components of empirical multifractality in financial returns
We perform a systematic investigation on the components of the empirical multifractality of financial returns using the daily data of Dow Jones Industrial Average from 26 May 1896 to 27 April 2007 as an example. The temporal structure and fat-tailed distribution of the returns are considered as possible influence factors. The multifractal spectrum of the original return series is compared with ...
متن کاملFads Models with Markov Switching Hetroskedasticity: decomposing Tehran Stock Exchange return into Permanent and Transitory Components
Stochastic behavior of stock returns is very important for investors and policy makers in the stock market. In this paper, the stochastic behavior of the return index of Tehran Stock Exchange (TEDPIX) is examined using unobserved component Markov switching model (UC-MS) for the 3/27/2010 until 8/3/2015 period. In this model, stock returns are decomposed into two components; a permanent componen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in Complex Systems
دوره 11 شماره
صفحات -
تاریخ انتشار 2008